Allie Dunn

From: Sent: To: Subject: Attachments: Allie Dunn Wednesday, 2 July 2025 4:32 pm

CM: Response to request for information re Water Testing Water Supply Water Quality Data LGOIMA Request 01072025.xlsx

Kia ora

I refer to your official information request dated 8 June 2025 seeking information about water testing.

Our response is as follows.

Attached is a spreadsheet of the Water Supply results for the requested "Substances".

Results are presented in accordance with units presented in the Water Services (Drinking Water Standards for New Zealand) Regulations 2022 and the Drinking Water Quality Assurance Rules 2022 which require data to be captured as (Milligram/Litre) **mg/L**.

Your request has asked for data to be reported in (microgram/Litre) ug/L. To convert data from mg/L to ug/L, the data result must be multiplied by 1000.

Data was selected from Tararua District Council Water Supply database for the following timeframes:

- 1st May 1st June 2021
- 1st May 1st June 2022
- 1st May 1st June 2023
- 1st May 1st June 2024
- 1st May 1st June 2025

The test point (sample) locations are as follows:

Water Supply	WS	SW	MW
Pahiatua	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at the treatment plant pre filtration	Sample tap at the Bore. Water direct from the bore / pre filtration
Eketahuna	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at the treatment plant pre filtration	No bore
Dannevirke	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at the treatment plant pre filtration	No bore
Woodville	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at	No bore

		the treatment plant pre filtration	
Pongaroa	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at the treatment plant pre filtration	No bore
Norsewood	Outgoing / post filtration /treated water Not in CBD	Not surface water	Incoming untreated water sample tap at the treatment plant water direct from the bore / pre filtration
Akitio	Outgoing / post filtration /treated water Not in CBD	Incoming untreated water sample tap at the treatment plant pre filtration	No bore

In November of 2021, The Water Services Act, came into effect. Following this on 25 July 2022, the Drinking Water Quality Assurance Rules came into effect, replacing the Drinking Water Standards for New Zealand 2025 (revised 2018).

Water Suppliers are required to follow the Drinking Water Quality Assurance Rules. There is no requirement to test any of the following substances: PFOA, PFPeA, PFNA, PFHA, PFHxS, M8PFOA, PFBA, PFBS, PFOS, PFAS (Forever Chemicals), Terbuthylazine, Atrazine, Triazine, Cyanazine, Desethyl terbuthylazine, Asbestos, Protozoa, Organochlorine, Organophosphate, Polysorbate 20, Polysorbate 30, Polysorbate 40, Polysorbate 60, Polysorbate 65, Polysorbate 80. There are no records at Tararua District Council for 2022-2025 and thus the timeframes 1st May – 1st June 2022, 1st May – 1st June 2023, 1st May – 1st June 2024, 1st May – 1st June 2025.

Under the previous Drinking Water Standards for New Zealand 2025 (revised 2018), pesticides were routinely tested approximately every 5 years. However, the Tararua District Council, does not have any records for the year 2021 and thus the timeframe . 1st May – 1st June 2021.

Protozoa

No Protozoal results / monitoring exist for any of the years 2021, 2022, 2023, 2024, 2025. Treatment Plants all have UV treatment and compliance is sought via the operation of the treatment in accordance with parameters stated in the current Drinking Water Quality Assurance Rules (July 2022) and prior to this, this occurred with the Drinking Water Standards for New Zealand 2025 (revised 2018)

Lead & Nitrates

The current Drinking Water Quality Assurance Rules (July 2022) has requirements to test for Lead and Nitrates. In the medium supplies (Akitio, Pongaroa, Norsewood supplies) Nitrates are monitored/tested once <u>Annually</u> in Ground Water Bores and in Surface Waters. If the Test date/result has fallen within the requested timeframe (1^{st} May – 1^{st} June) the result will occur in the spreadsheet.

In the large supplies (Dannevirke , Pahiatua, Woodville and Eketahuna), Nitrates are monitored/tested once <u>Monthly</u> and Lead is monitored /tested once <u>Annually</u>. If the Test date/result has fallen within timeframe (1st May – 1st June) the result will occur in the spreadsheet.

In accordance with Drinking Water Quality Assurance Rules (July 2022), where Aluminium based coagulants / flocculants are used at the treatment plant i.e. (Woodville, Eketahuna and Woodville supplies) treatment plants, Lead is one of the chemical substances monitored monthly. If the Test date/result has

fallen within the requested timeframe (1st May – 1st June) the result will occur in the spreadsheet. Nitrate monitoring is not a requirement post treatment.

Lead is routinely monitored in the distribution zone for (Pahiatua, Woodville, Eketahuna and Dannevirke supplies) once every 6 months. There were no results within the requested timeframe (1st May – 1st June) for years 2021, 2022, 2023, 2024, 2025. For (Akitio, Pongaroa and Norsewood) Lead is monitored Annually. There were no results within the requested timeframe (1st May – 1st June) for years 2021, 2022. Nitrate monitoring is not a requirement in the distribution zone.

You have the right to seek an investigation and review by the Ombudsman of this decision. Information about how to make a complaint is available at www.ombudsman.parliament.nz or freephone 0800 802 602.

Ngā mihi

From: Allie Dunn Sent: Wednesday, 11 June 2025 4:02 pm To: Subject: CM: Acknowledgement - request for information re Water Testing

Kia ora

This email is to acknowledge receipt of your request for information, regarding water testing.

We will endeavour to respond to your request as soon as possible and in any event no later than 7 July 2025, being 20 working days after the day your request was received. If we are unable to respond to your request by then, we will notify you of an extension of that timeframe.

As part of our commitment to openness and accountability, we are now proactively publishing copies of requests for information and the responses provided to these requests, on our website. In doing so, we will ensure we comply with the provisions of the Privacy Act 2020 and redact any personal / identifying information from any response published.

If you have any questions about this, please don't hesitate to get in contact with me.

Allie Dunn | Manager Democracy Services | Deputy Electoral Officer

Democracy Services | Tararua District Council

- Phone: +64 6 3744080 | Mobile: +64 27 3331626
- <u>Allie.Dunn@Tararuadc.govt.nz</u>
- 26 Gordon Street, Dannevirke 4930, PO Box 115
- www.tararuadc.govt.nz
- <u>www.facebook.com/tararuadc</u>

From:

Sent: Sunday, 8 June 2025 8:31 pm To: Info - Tararua District Council <<u>Info@TararuaDC.Govt.NZ</u>> Subject: OIA Request Water Testing

EXTERNAL EMAIL ALERT: Caution advised. This message is from an external sender. Verify the sender's identity and use caution with attachments and links.

Tararua District Council

26 Gordon Street

Dannevirke

To Tracey Collis,

Can you please provide me with the following details for Dates between

1st May – 1st June 2021 1st May – 1st June 2022 1st May – 1st June 2023 1st May – 1st June 2024 1st May – 1st June 2025

If the testing of these substances are not captured between these dates please specify why they were not and the alternative consistent dates they were tested, and provide that data. The test point location should be clearly identified and an indication that this point remained unfiltered or screened prior to testing. Show where the publicly accessible common tap furthest downstream, from the Water treatment facility while still within the CBD Area (WS) a Surface Water Site (SW) and Well Site (MW) near the Water Treatment Facility.

All data needs to be reported in Micro Grams per Liter ug/L in an editable Excel format as shown here:

Substance	202	25		202	4		202	3		202	2		202	1	
	WS	SW	MW												
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS (Forever Chemicals)															
Terbuthylazine															
Atrazine															
Triazine															
Cyanazine															
Desethyl terbuthylazine															
Lead (Pb)															
Nitrogen (Synthetic Nitrates)															
Asbestos															
Protozoa															
Organochlorine															
Organophosphate															
Polysorbate 20															
Polysorbate 30															
Polysorbate 40															
Polysorbate 60															

Substance	202	25	202	4	202	3	202	2	202	1	
Polysorbate 65											
Polysorbate 80											

Regards

Substance			2025			2024			2023			2022			2021
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS (Forever Chemicals)															
Terbuthylazine															
Atrazine															
Triazine															
Cyanazine															
Desethyl terbuthylazine															
Lead (Pb)	<0.001														
Nitrogen (Synthetic Nitrates) (NO3)			0.03 mg/L or 30 ug/L			0.031 mg/L or 31 ug/L			0.028 mg/L or 28 ug/L						
Asbestos															
Protozoa															
Organochlorine															
Organophosphate															
Polysorbate 20															
Polysorbate 30															
Polysorbate 40															
Polysorbate 60															
Polysorbate 65															
Polysorbate 80															

Substance			2025			2024			2023			2022			2021
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS (Forever															
Chemicals)															
Terbuthylazine															
Atrazine															
Triazine															
Cyanazine															
Desethyl															
terbuthylazine															
Lead (Pb)	<0.001														
Nitrogen (Synthetic Nitrates) (NO3)			0.085 mg/L or 85 ug/L			0.101 mg/L or 101 ug/L			0.145 mg/L or 145 ug/L						
Asbestos															
Protozoa															
Organochlorine															
Organophosphate															
Polysorbate 20															
Polysorbate 30															
Polysorbate 40															
Polysorbate 60															
Polysorbate 65															
Polysorbate 80															

Substance			2025			2024			2023			2022			2021
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS (Forever Chemicals)															
Terbuthylazine															
Atrazine															
Triazine															
Cyanazine															
Desethyl terbuthylazine															
Lead (Pb)															
Nitrogen (Synthetic Nitrates)		0.268 mg/L or 268 ug/L			0.126 mg/L or 126 ug/L			0.344 mg/L or 344 ug/L							
Asbestos															
Protozoa															
Organochlorine															
Organophosphate															
Polysorbate 20															
Polysorbate 30															
Polysorbate 40															
Polysorbate 60															
Polysorbate 65															
Polysorbate 80															

Substance			2025			2024			2023			2022			2021
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS (Forever															
Chemicals)															
Terbuthylazine															
Atrazine															
Triazine															
Cyanazine															
Desethyl															
terbuthylazine															
Lead (Pb)	<0.001														
Nitrogen (Synthetic		0.05 mg/L or 50 ug/L			0.066 mg/L or 66 ug/L			0.063 mg/L or <mark>63 ug/L</mark>							
Nitrates)					,										
Asbestos															
Protozoa															
Organochlorine															
Organophosphate															
Polysorbate 20															
Polysorbate 30															
Polysorbate 40															
Polysorbate 60	L														
Polysorbate 65															
Polysorbate 80															

Pongaroa

Substan ce			2025			2024			2023			2022			2021
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS															
(Forever															
Chemical															
s)															
Terbuthyl															
azine															
Atrazine															
Triazine															
Cyanazin															
e Decethul															
Desethyl terbuthyl															
azine															
Lead															
(Pb)															
Nitrogen	0.4 mg/L or 400 ug/L														
(Syntheti	0.4 mg/L or 400 ug/L														
с															
Nitrates)															
Asbestos															
Protozoa															
Organoc hlorine															
niorine															
Organop hosphate															
hosphate															
Polysorba															
te 20															
Polysorba															
Polysorba te 30															
Polysorba															
Polysorba te 40															
Polysorba															
te 60															
Polysorba															
te 65		L													
Polysorba te 80															
te 80															

Norsewood

Substan			2025			2024			2023			2022			2021
се	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW
PFOA															
PFPeA															
PFNA															
PFHA															
PFHxS															
M8PFOA															
PFBA															
PFBS															
PFOS															
PFAS															
(Forever															
Chemical															
s)															\vdash
Terbuthyl															
azine Atrazino															
Atrazine Triazine															┼──┤
															┝──┤
Cyanazin e															
C Desethyl															+
terbuthyl															
azine															
Lead (Pb)															
Nitrogen															╂───┤
(Syntheti	0.021 mg/L or 21 ug/L														
c	0.021 mg/L or 21 ug/L	0.005 mg/L or 5 ug/L		0.009 mg/L or 9 ug/L											
Nitrates)															
Asbestos															
Protozoa															
Organoc hlorine															
hlorine															
Organop															
Organop hosphate															
															╂───┤
Polysorba te 20															
Polysorba															┝──┤
Polysorba te 30															
Polysorba te 40															
Polysorba te 60															
Relycorba															╉───┥
Polysorba te 65															
Polysorba															
Polysorba te 80															

Substance			2025			2024			2023			2022	
	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS	SW	MW	WS
PFOA													
PFPeA													
PFNA													
PFHA													
PFHxS													
M8PFOA													
PFBA													
PFBS													
PFOS													
PFAS (Forever													
Chemicals)													
Terbuthylazine													
Atrazine													
Triazine													
Cyanazine													
Desethyl													
terbuthylazine													
Lead (Pb)													
Nitrogen													
(Synthetic				0.133 mg/L or 133 ug/L									
Nitrates)													
Asbestos								<u> </u>					
Protozoa													
Organochlorine													
Organophosph													
ate													
Polysorbate 20													
Polysorbate 30													
Polysorbate 40													
Polysorbate 60													
Polysorbate 65													
Polysorbate 80													

SW MW Image: SW Image: SW Image: SW Ima		2021
	SW	